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INTRODUCTION 

     In 1975, Golab [7] introduced the idea of quarter-symmetric metric. Further,many authors had 

been about the various types of quarter symmetric metric connection and their characteristics in 

([3].[4],[5],[8]) in 1980 Mishra and Pandey [6] gave the notation of Ricci quarter symmetric 

metric connection. In 1995, Kamilya and De [1] studied the Ricci quarter symmetric metric 

connection on a Riemannian manifold. Earlier in 2011, Yasar also studied the Ricci quarter 

symmetric connection on light like sub-manifolds in semi-Riemannian manifold [2]. 

     A linear connection 𝛻  in a Riemannian manifold Mⁿ is said to be Ricci quarter symmetric 

metric connection if the torsion tensor T defined as 

       T(X,Y)=π(Y)LX-π(X)LY                                                   (1.1) 

     Where π is a 1-form and L is the (1,1) Ricci tensor defined by 

g(LX,Y)=S(X,Y)                                                    (1.2) 

     S is the Ricci tensor of Mⁿ 

     A linear connection 𝛻  is called metric connection if 

∇g(Y,Z)=0                                                      (1.3) 

Other wiseit is known as Ricci quarter symmetric non metric connection . 

     For any vector field X and Y on Mⁿ 

     If ∇ is Levi-Civita connection of the manifold then a ricci quarter symmetric metric 

connection is Given by [1] 

𝛻 XY=∇X(Y)LX-S(X,Y)ρ                                                   (1.4) 

     Where ρ is the vector field 

π(X)=g(X,ρ)                                                     (1.5) 

    In this paper we deal with an Einstein manifold admitting the quarter symmetric metric 

connection . After the Introduction , we have the brief introduction of the Einstein manifold 

admitting the ricci quarter symmetric metric connection in Preliminaries. In section 3, we have 

studied the m-projective curvature curvature tensor on admitting the ricci quarter symmetric 

metric connection. In section 4, we have studied the Psuedo projective curvature curvature tensor 

on admitting the ricci quarter symmetric metric connection. some other curvature tensor studied 

in last section. 
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PRELIMINARIES 

     Let Mⁿ be an n-dimensional Riemannian manifold with Riemannian metric g, is said to to be 

an Einstein manifold. if its ricci tensor S of type (0,2)is of the form 

       S(X,Y)=
𝑟

𝑛
g(X,Y),                                                    (2.1) 

     Where r is the scalar curvature . 

     Let 𝑅  be the curvature tensor of the connection 𝛻  on the ricci quarter symmetric metric 

connection of Einstein manifold .It also satisfies 

𝑅 (X,Y)Z = R(X,Y)Z-
𝑟

𝑛
[M(Y,Z)X-M(X,Z)Y]                 

-
𝑟

𝑛
[g(Y,Z)QX-g(X,Z)QY],      (2.2) 

𝑆 (X,Y)=
𝑟

𝑛
[g(Y,Z)-{(n-2)M(Y,Z)+mg(Y,Z)}],                   (2.3) 

𝑟 =
𝑟

𝑛
[n-2(n-1)m],                                                   (2.4) 

𝑆 (Y,Z)-𝑆 (Z,Y) = 0                                                   (2.5) 

⇔M(Z,Y)-M(Y,Z)=0 

𝑅 (X,Y)Z+𝑅 (Y,Z)X+𝑅 (Z,X)Y = 0                                                 (2.6) 

⇔M(Z,Y)-M(Y,Z)=0, 

    Where M is a tensor of type (0,2) defined by 

       M(X,Y) = g(QX,Y)                                                  (2.7) 

= (∇π)(Y)-π(Y)π(LX)(1/2)π(ρ)S(X,Y), 

    Where Q is vector field defined by 

       QX=∇ρ-π(LX)ρ+(1/2)π(ρ)LX                (2.8) 

𝑆 is the ricci tensor of 𝛻 ,𝑟  is the scalar curvature of 𝛻  and m is the trace of the tensor M(Y,Z). 

     An Einstein manifold Mⁿ(n>3) admits a ricci quarter symmetric metric connection is the 

manifold of constant curvature if the curvature tensor ´R is of the form 

´𝑅 (X,Y,Z,U) = K[g(Y,Z)g(X,U)-g(X,Z)g(Y,U)]    

+
𝑟

𝑛
 [M(Y,Z)g(X,U)-M(X,Z)g(Y,U)] 

    +
𝑟

𝑛
g(Y,Z)M(X,U)-g(X,Z)M(Y,U)]   (2.9)                 

´𝑆 (Y,Z)=K(n-1)g(Y,Z)+
𝑟

𝑛
 [(n-2)M(Y,Z)+g(Y,Z)]          (2.10) 

´𝑟 =Kn(n-1)g(Y,Z)+
𝑟

𝑛
2(n-2)m                                                   (2.11) 
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m*-PROJECTIVE CURVATURE TENSOR 

Definition ; Let Mⁿ be n-dimensional Einstein manifold then the m*-projective curvature 

curvature tensor of Mⁿ with respect ∇ is defined by [9], 

       w*(X,Y,Z)=R(X,Y)Z  -
1

2(𝑛−1)
S(Y,Z)X-S(X,Z)Y] 

                         -
1

2(𝑛−1)
 [g(Y,Z)LX-g(X,Z)LY].              (3.1) 

 

Definition; Let Mⁿ be n-dimensional Einstein manifold with quarter symmetric metric 

connection ∇ ,then the m*-projective curvature tensor of Mⁿ with respect to the ricci quarter 

symmetric metric connection 𝛻  is defined by [9], 

𝑤 ∗ (X,Y,Z)=𝑅 (X,Y)Z -
1

(𝑛−1)
[𝑆 (Y,Z)X-𝑆 (X,Z)Y] 

  -
1

(𝑛−1)
 [g(Y,Z)𝐿 X-g(X,Z)𝐿 Y].    (3.2) 

               Interchanging X,Y and Z in (3.2) 

𝑤 ∗ (X,Y,Z)+𝑤 ∗ (Y,Z)X+𝑤 ∗ (Z,X)Y=0    (3.3) 

     If and only if M(Y,Z) is symmetric. Hence we have the theorem 

Theorem ;  In an n-dimensional Einstein manifold Mⁿ with ricci quarter symmetric metric 

connection𝛻  a necessary and sufficient condition that the m*-projective curvature tensor of Mⁿ 

with respect to the ricci quarter symmetric metric connection 𝛻  to be cyclic is that the tensor M 

is symmetric. 

   Again by using (2.2)(2.3)(3.1) and (3.2) we get 

𝑤 ∗ (X,Y,Z,U)=𝑤 ∗ (X,Y,Z,U)                       (3.4) 

       -
𝑛

2(𝑛−1)
 [M(Y,Z)S(X,U)+M(X,Z)S(Y,U)+M(X,U)S(Y,Z)+M(Y,U)S(X,Z)] 

-
𝑚

2(𝑛−1)
 [g(Y,Z)S(X,U)+g(X,Z)S(Y,U)+g(X,U)S(Y,Z)+g(Y,U)S(X,Z)]. 

    If S=0 

𝑤 ∗ (X,Y,Z,U)=𝑤 ∗ (X,Y,Z,U)                       (3.5) 

     Hence we have 

Theorem ;  If the ricci tensor of the Einstein manifold admitting the quarter symmetric metric 

connection is vanishes then m*-projective curvature tensor of the Einstein manifold with ricci 

quarter symmetric metric connection is equal to curvature tensor of that manifold. 
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for Einstein manifold Mⁿ (n>3)of constant curvature admits a ricci quarter symmetric metric 

connection , we have 

 

Corollary;An Einstein manifold Mⁿ (n>3) admits a ricci quarter symmetric metric connection is 

the manifold of constant curvature if the curvature tensor ´R is the form of (2.9)we have the 

following relation; 

´𝑅 (X,Y,Z,U)=-´𝑅 (Y,X,Z,U) 

´𝑅  (X,Y,Z,U)=-´𝑅 (X,Y,U,Z) 

´𝑅  (X,Y,Z,U)=-´𝑅 (Z,U,X,Y)⇔M(X,Y)=M(Y,X) 

    From (2.9),(2.10) and (3.2) 

𝑤 ∗ (X,Y,Z,U) = K[g(Y,Z)g(X,U)-g(X,Z)g(Y,U)] (3.2) 

+
𝑟

𝑛
[M(Y,Z)g(X,U)-M(X,Z)g(Y,U)] 

+
𝑟

𝑛
[g(Y,Z)M(X,U)-g(X,Z)M(Y,U)] 

  -
1

2(𝑛−1)
[K(n-1)g(Y,Z)g(X,U) 

+
𝑟

𝑛
{(n-2)M(Y,Z)g(X,U)+mg(Y,Z)g(X,U)} 

-K(n-1)g(X,Z)g(Y,U) -
𝑟

𝑛
{(n-2)M(X,Z)g(Y,U)+mg(X,Z)g(Y,U)} 

 +K(n-1)g(X,U)g(Y,Z) 

+
𝑟

𝑛
{(n-2)M(X,U)g(Y,Z)+mg(X,U)g(Y,Z)} 

-K(n-1)g(Y,U)g(X,Z)-
𝑟

𝑛
{(n-2)M(Y,U)g(X,Z)+mg(Y,U)g(X,Z)}] 

    From (3.2),(3.6) and corollary, we can state the following theorem; 

 

Theorem ;  If Einstein manifold Mⁿ(n>3)admits a ricci quarter symmetric metric connection is 

the manifold of constant curvature then m*- projective curvature tensor of Mⁿ with respect to 𝛻  

satisfies the following 

       1. 𝑤 ∗ (X,Y,Z,U)=-𝑤 ∗ (Y,X,Z,U) 

 2. 𝑤 ∗  (X,Y,Z,U)=𝑤 ∗ (X,Y,U,Z) 

       3. 𝑤 ∗  (X,Y,Z,U)-𝑤 ∗ (Z,U,X,Y)=0 

⇔M(X,Y)=M(Y,X) 

PSEUDO PROJECTIVE TENSOR 
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Definition ; Let Mⁿ be n-dimensional Einstein manifold admitting ricci quarter symmetric metric 

connection then the pseudo-projective curvature curvature tensor of Mⁿ with respect 𝛻  is defined 

by , 

𝑃 (X,Y)Z = a𝑅 (X,Y)Z+b[𝑆 (Y,Z)X-𝑆 (X,Z)Y]-
𝑟 

𝑛
{

𝑎

𝑛−1
+b}[g(Y,Z)X-g(X,Z)Y]. 

From(2.2),(2.3),(2.4),(2.5),(2.6) and (4.01), we have 

𝑃 (X,Y,Z)+𝑃 (Y,Z,X)+𝑃 (Z,X,Y)=0                                                (4.2) 

⇔M(Y,Z)=M(Z,Y) 

         We have the following theorem: 

 

Theorem ;  In an n-dimensional Einstein manifold Mⁿ with ricci quarter symmetric metric 

connection 𝛻  a necessary and sufficient condition that the Pseudo-projective curvature tensor of 

Mⁿ with respect to the ricci quarter symmetric metric connection 𝛻  to be cyclic is that the tensor 

M is symmetric. 

taking inner product with U and interchanging X and Y in (4.01), we get.Theorem ;  If Einstein 

manifold Mⁿ(n>3)admits a ricci quarter symmetric metric connection is the manifold of constant 

curvature then pseudo- projective curvature tensor of Mⁿ with respect to 𝛻  satisfies the following 

       1. 𝑃 (X,Y,Z,U)=-𝑃 (Y,X,Z,U) 

2. 𝑃 (X,Y,Z,U)=𝑃 (X,Y,U,Z) 

       3. 𝑃 (X,Y,Z,U)-𝑃 (Z,U,X,Y)=0 

⇔M(X,Y)=M(Y,X) 

CONCIRCULAR CURVATURE TENSOR 

Definition ; Let Mⁿ be n-dimensional Einstein manifold admitting ricci quarter symmetric metric 

connection then the concircular curvature tensor of Mⁿ with respect 𝛻  is defined by , 

𝑍 (X,Y)U=𝑅 (X,Y)U-
𝑟 

𝑛(𝑛−1)
[g(Y,U)X-g(X,U)Y].                     (5.1) 

From(2.2),(2.4) and (5.1), we have 

𝑍 (X,Y)U = R(X,Y)U-
r

n
 [M(Y,U)X-M(X,U)Y+g(Y,U)QX-g(X,U)QY] 

-
r

n
[
n−2(n−1)m

n(n−1)
{g(Y,U)X-g(X,U)Y}](5.2) 

Interchanging X andY in (5.2), we have 

𝑍 (X,Y)U+𝑍 (Y.X)U=R(X,Y)U+R(Y,X)U 
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    Hence we state the following theorem 

Theorem ;  In an n-dimensional Einstein manifold Mⁿ with ricci quarter symmetric metric 

connection 𝛻  a necessary and sufficient condition that the concircular curvature tensor of Mⁿ 

with respect to the ricci quarter symmetric metric connection 𝛻  to be symmetric with respect to 

Xand Y is that curvature tensor of Einstein manifold is symmetric with respect to metric 

connection∇ in Xand Y. 

     From (5.01),(5.02).and interchanging the X,Yand we get  

𝑍 (X,Y,U)+𝑍 (Y,U,X)+𝑍 (U,X,Y)=0 

⇔M(Y,U)=M(U,Y) 

         We have the following theorem: 

    Theorem ;  In an n-dimensional Einstein manifold Mⁿ with ricci quarter symmetric metric 

connection ∇ a necessary and sufficient condition that the Concircular curvature tensor of Mⁿ 

with respect to the ricci quarter symmetric metric connection ∇ to be cyclic is that the tensor M is 

symmetric. 

     For constant curvature , by using (2.9)(2.10) and (5.01) we have 

𝑍 (X,Y,U,V) = 
r

n
[
2m

n
g(U,X)g(V,Y)-g(U,Y)g(V,X)}]                 

 +
r

n
[M(V,X)g(U,Y)-M(U,X)g(V,Y)] 

+
r

n
[M(U,Y)g(V,X)-M(V,Y)g(U,X)]   (5.3) 

    From the (5.3) we have following statement 

Theorem ;  If Einstein manifold Mⁿ(n>3)admits a ricci quarter symmetric metric connection is 

the manifold of constant curvature then concircular curvature tensor of Mⁿ with respect to 𝛻  

satisfies the following 

       1. 𝑍 (X,Y,U,V)=-𝑍 (Y,X,U,V) 

2. 𝑍 (X,Y,V,U)=𝑍 (X,Y,U,V) 

       3. 𝑍 (X,Y,U,V)-𝑍 (U,V,X,Y)=0 

⇔M(X,Y)=M(Y,X) 

     Again from (5.3),if 

𝑍 =0 ,𝑟 =0 

and we state 
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Corollary;Let Mⁿ(n>3) be an Einstein manifold admits a ricci quarter symmetric metric 

connection is the manifold of constant curvature. If concircular curvature tensor of Mⁿ with 

respect to 𝛻  is vanishes then scalar curvature tensor is also vanishes. 

CONHARMONIC CURVATURE TENSOR 

Definition ; Let Mⁿ be n-dimensional Einstein manifold then the conharmonic curvature tensor of 

Mⁿ with respect ∇ is defined by , 

       V(X,Y,Z,U) = R(X,Y,Z,U)                                                (6.1) 

       -
1

(n−1)
[S(Y,Z)g(X,U)-S(X,Z)g(Y,U)] 

       -
1

(n−1)
[S(X,U)g(Y,Z)-S(Y,U)g(X,Z)] 

Definition ; Let Mⁿ be n-dimensional Einstein manifold admitting the ricci quarter symmetric 

metric connection then the conharmonic curvature tensor of Mⁿ with respect 𝛻  is defined by 

𝑉 (X,Y,Z,U) = 𝑅 (X,Y,Z,U)                                                (6.2) 

-
1

n−1
 [𝑆 (Y,Z)g(X,U)-𝑆 (X,Z)g(Y,U)] 

 -
1

n−1
[𝑆 (X,U)g(Y,Z)-𝑆 (Y,U)g(X,Z)]. 

From(2.2),(2.3)(6.1) and (6.2), we have 

𝑉 (X,Y,Z,U) = V(X,Y,Z,U)                                                (6.3) 

-
2rm

n(n−2)
[g(X,Z)g(Y,U)-g(Y,Z)g(X,U)] 

put X=U=eiin (6.3), and taking the sum for1≤i≤n we have we get 

𝑆 (Y,Z)=S(Y,Z)+
2rm

n
g(Y,Z)                                                (6.4) 

    Hence we state the following theorem 

Theorem ;  Let Mⁿ be n-dimensional Einstein manifold admitting the ricci quarter symmetric 

metric connection then the conharmonic curvature tensor of Mⁿ with respect to 𝛻  is vanishes then 

Ricci tensor of conharmonic curvature tensor of Mⁿ is in the form of 

𝑆 (Y,Z)=S(Y,Z)+
2rm

n
g(Y,Z).                                                (6.5) 

if S=0, then from (6.2) 

𝑉 (X,Y,Z,U)=R(X,Y,Z,U) 

if r=0, then from (6.3) 

𝑉 (X,Y,Z,U)=V(X,Y,Z,U) 
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Corollary;If the ricci tensor of the Einstein manifold admitting the ricci quarter symmetric 

metric connection is vanishes then conharmonic curvature tensor of the Einstein manifold with 

ricci quarter symmetric metric connection is equal to curvature tensor of that manifold 

Corollary;If the scalar curvature tensor of the Einstein manifold is vanishes then conharmonic 

curvature tensor of the Einstein manifold with ricci quarter symmetric metric connection is equal 

to conharmonic curvature tensor of the Einstein manifold. 

          Let Mⁿ(n>3) be Einstein manifold of constant curvature admits a ricci quarter symmetric 

metric connection. by using (2.9) and (2.10) we define the conharmonic curvature tensor of 

𝑉 (X,Y,Z,U) = K[g(Y,Z)g(X,U)-g(X,Z)g(Y,U)]                                         (6.6) 

-
Kn(n−1)

n(n−2)
[M(Y,Z)g(X,U)-g(Y,Z)M(X,U)] 

 -
Kn(n−1)

n(n−2)
[M(X,Z)g(Y,U)-g(X,Z)M(Y,U)] 

Theorem ; If Einstein manifold Mⁿ(n>3)admitting the ricci quarter symmetric metric connection 

is the manifold of constant curvature then conharmonic curvature tensor of Mⁿ with respect to ∇ 

satisfies the following 

       1. 𝑉 (X,Y,Z,U)=-𝑉 (Y,X,Z,U) 

2.𝑉  (X,Y,Z,U)=𝑉 (X,Y,U,Z) 

       3. 𝑉 (X,Y,Z,U)-𝑉 (Z,U,X,Y)=0. 

 

PROJECTIVE CURVATURE TENSOR 

Definition ; Let Mⁿ be n-dimensional Einstein manifold admitting the ricci quarter symmetric 

metric connection then the Projective curvature tensor of Mⁿ with respect ∇ is defined by 

𝑃 (X,Y),Z = 𝑅 (X,Y),Z                                                   (7.1) 

       -
1

(n−1)
[𝑆 (Y,Z)X-𝑆 (X,Z)Y] 

From(2.2),(2.3)and(7.01) we have 

𝑃 (X,Y),Z = P(X,Y),Z- 
r

n
 [M(X,Z)g(Y,U)-g(X,Z)M(Y,U)               (7.2) 

if r=0, then from (7.2) 

𝑃 (X,Y),Z=P(X,Y),Z                         (7.3) 

Corollary;If the scalar curvature tensor of the Einstein manifold admitting the ricci quarter 

symmetric metric connection is vanishes then projective curvature tensor of the Einstein 
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manifold with ricci quarter symmetric metric connection is equal to projective curvature tensor 

of the Einstein manifold. 

     From (7.2)  

𝑃 ( (X,Y,Z)+𝑃 ( (Y,Z,X)+𝑃 ( (Z,X,Y)=0                                                (7.4) 

⇔M(Y,Z)=M(Z,Y) 

         We have the following theorem: 

    Theorem ;  In an n-dimensional Einstein manifold Mⁿ with ricci quarter symmetric metric 

connection 𝛻  a necessary and sufficient condition that the projective curvature tensor of Mⁿ with 

respect to the ricci quarter symmetric metric connection 𝛻  to be cyclic is that the tensor M is 

symmetric. 

          Let Mⁿ(n>3) be Einstein manifold of constant curvature admits a ricci quarter symmetric 

metric connection. by using (2.9) and (2.10) we define the projective curvature tensor of 

𝑃 (X,Y,Z,U) = 
r

n(n−1)
[M(Y,Z)g(X,U)-mg(Y,Z)g(X,U)]    (7.5) 

    +
r

n(n−1)
[M(X,Z)g(Y,U)-mg(X,Z)g(Y,U)] 

     +
r

n(n−1)
[(n-1)M(X,U)g(Y,Z)-(n-1)M(Y,U)g(X,Z)] 

Theorem ;  If Einstein manifold Mⁿ(n>3)admitting the ricci quarter symmetric metric 

connection is the manifold of constant curvature then Projective curvature tensor of Mⁿ with 

respect to ∇ satisfies the following 

       1. 𝑃 (X,Y,Z,U)=-𝑃 (Y,X,Z,U 

            2. 𝑃 (X,Y,Z,U)=𝑃 (X,Y,U,Z) 
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